185 research outputs found

    Entanglement and magnetic order

    Full text link
    In recent years quantum statistical mechanics have benefited of cultural interchanges with quantum information science. There is a bulk of evidence that quantifying the entanglement allows a fine analysis of many relevant properties of many-body quantum systems. Here we review the relation between entanglement and the various type of magnetic order occurring in interacting spin systems.Comment: 29 pages, 10 eps figures. Review article for the special issue "Entanglement entropy in extended systems" in J. Phys. A, edited by P. Calabrese, J. Cardy and B. Doyo

    Algebraic equivalence between certain models for superfluid--insulator transition

    Full text link
    Algebraic contraction is proposed to realize mappings between models Hamiltonians. This transformation contracts the algebra of the degrees of freedom underlying the Hamiltonian. The rigorous mapping between the anisotropic XXZXXZ Heisenberg model, the Quantum Phase Model, and the Bose Hubbard Model is established as the contractions of the algebra u(2)u(2) underlying the dynamics of the XXZXXZ Heisenberg model.Comment: 5 pages, revte

    Quantum discord in a spin system with symmetry breaking

    Get PDF
    We analyze the quantum discord Q throughout the low-temperature phase diagram of the quantum XY model in transverse field. We first focus on the T=0 order-disorder quantum phase transition both in the symmetric ground state and in the symmetry broken one. Besides it, we highlight how Q displays clear anomalies also at a non critical value of the control parameter inside the ordered phase, where the ground state is completely factorized. We evidence how the phenomenon is in fact of collective nature and displays universal features. We also study Q at finite temperature. We show that, close to the quantum phase transition, Q exhibits quantum-classical crossover of the system with universal scaling behavior. We evidence a non trivial pattern of thermal correlations resulting from the factorization phenomenon.Comment: 9 pages, 9 figure, Contribution to the Festschrift volume in honour of Vladimir Korepi

    Local reversibility and entanglement structure of many-body ground states

    Full text link
    The low-temperature physics of quantum many-body systems is largely governed by the structure of their ground states. Minimizing the energy of local interactions, ground states often reflect strong properties of locality such as the area law for entanglement entropy and the exponential decay of correlations between spatially separated observables. In this letter we present a novel characterization of locality in quantum states, which we call `local reversibility'. It characterizes the type of operations that are needed to reverse the action of a general disturbance on the state. We prove that unique ground states of gapped local Hamiltonian are locally reversible. This way, we identify new fundamental features of many-body ground states, which cannot be derived from the aforementioned properties. We use local reversibility to distinguish between states enjoying microscopic and macroscopic quantum phenomena. To demonstrate the potential of our approach, we prove specific properties of ground states, which are relevant both to critical and non-critical theories.Comment: 12 revtex pages, 2 pdf figs; minor changes, typos corrected. To be published in Quantum Science and Technolog

    Exact results for persistent currents of two bosons in a ring lattice

    Full text link
    We study the ground state of two interacting bosonic particles confined in a ring-shaped lattice potential and subjected to a synthetic magnetic flux. The system is described by the Bose-Hubbard model and solved exactly through a plane-wave Ansatz of the wave function. We obtain energies and correlation functions of the system both for repulsive and attractive interactions. In contrast with the one-dimensional continuous theory described by the Lieb-Liniger model, in the lattice case we prove that the center of mass of the two particles is coupled with its relative coordinate. Distinctive features clearly emerge in the persistent current of the system. While for repulsive bosons the persistent current displays a periodicity given by the standard flux quantum for any interaction strength, in the attractive case the flux quantum becomes fractionalized in a manner that depends on the interaction. We also study the density after the long time expansion of the system which provides an experimentally accessible route to detect persistent currents in cold atom settings. Our results can be used to benchmark approximate schemes for the many-body problem

    Theoretical Description of Micromaser in the Ultrastrong-Coupling Regime

    Full text link
    We theoretically investigate an ultrastrongly-coupled micromaser based on Rydberg atoms interacting with a superconducting LC resonator, where the common rotating-wave approximation and slowly-varying-envelope approximation are no longer applicable. The effect of counter-rotating terms on the masing dynamics is studied in detail. We find that the intraresonator electric energy declines and the microwave oscillation frequency shifts significantly in the regime of ultrastrong coupling. Additionally, the micromaser phase fluctuation is suppressed, resulting in a reduced spectral linewidth.Comment: 10 pages, 3 figure

    Scaling of geometric phase versus band structure in cluster-Ising models

    Full text link
    We study the phase diagram of a class of models in which a generalized cluster interaction can be quenched by Ising exchange interaction and external magnetic field. We characterize the various phases through winding numbers. They may be ordinary phases with local order parameter or exotic ones, known as symmetry protected topologically ordered phases. Quantum phase transitions with dynamical critical exponents z = 1 or z = 2 are found. Quantum phase transitions are analyzed through finite-size scaling of the geometric phase accumulated when the spins of the lattice perform an adiabatic precession. In particular, we quantify the scaling behavior of the geometric phase in relation with the topology and low energy properties of the band structure of the system

    Topological pumping in Aharonov-Bohm rings

    Full text link
    Topological Thouless pumping and Aharonov-Bohm effect are both fundamental effects enabled by the topological properties of the system. Here, we study both effects together: topological pumping of interacting particles through Aharonov-Bohm rings. This system can prepare highly entangled many-particle states, transport them via topological pumping and interfere them, revealing a fractional flux quantum. The type of the generated state is revealed by non-trivial Aharonov-Bohm interference patterns that could be used for quantum sensing. The reflections induced by the interference result from transitions between topological bands. Specific bands allow transport with a band gap scaling as the square-root of the particle number. Our system paves a new way for a combined system of state preparation and topological protected transport.Comment: to be published in Communications Physic
    corecore